first off, let's find the slope of PQ
[tex]\bf \begin{array}{ccccccccc}
&&x_1&&y_1&&x_2&&y_2\\
% (a,b)
&P&(~ 2 &,& 2~)
% (c,d)
&Q&(~ 8 &,& 4~)
\end{array}
\\\\\\
% slope = m
slope = m\implies
\cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{8-2}{4-2}\implies \cfrac{6}{2}\implies 3[/tex]
now, a perpendicular line to PQ, will have a negative reciprocal slope, thus
[tex]\bf \textit{perpendicular, negative-reciprocal slope for slope}\quad 3\implies \cfrac{3}{1}\\\\
negative\implies -\cfrac{3}{ 1}\qquad reciprocal\implies - \cfrac{ 1}{3}[/tex]
now, we also know that, the line is a bisector of PQ, therefore, it cuts PQ in two equal halves, so it passes half-way through PQ, what is that point anyway?
[tex]\bf ~~~~~~~~~~~~\textit{middle point of 2 points }\\\\
\begin{array}{ccccccccc}
&&x_1&&y_1&&x_2&&y_2\\
% (a,b)
&P&(~ 2 &,& 2~)
% (c,d)
&Q&(~ 8 &,& 4~)
\end{array}\qquad
% coordinates of midpoint
\left(\cfrac{ x_2 + x_1}{2}\quad ,\quad \cfrac{ y_2 + y_1}{2} \right)
\\\\\\
\left( \cfrac{8+2}{2}~~,~~\cfrac{4+2}{2} \right)\implies (5~,~3)[/tex]
so then, what's the equation of a line whose slope is -1/3 and runs through 5,3?
[tex]\bf \begin{array}{ccccccccc}
&&x_1&&y_1\\
% (a,b)
&&(~ 5 &,& 3~)
\end{array}
\\\\\\
% slope = m
slope = m\implies -\cfrac{1}{3}
\\\\\\
% point-slope intercept
\stackrel{\textit{point-slope form}}{y- y_1= m(x- x_1)}\implies y-3=-\cfrac{1}{3}(x-5)
\implies
y-3=-\cfrac{1}{3}x+\cfrac{5}{3}
\\\\\\
y=-\cfrac{1}{3}x+\cfrac{5}{3}+3\implies y=-\cfrac{1}{3}x+\cfrac{14}{3}[/tex]