the answer is red show step by step of the pro tem to get the answer

In order to rationalize the denominator of each expression, we need to multiply the expression by the same radical in the denominator, this way we can remove the radical from the denominator.
9)
[tex]\frac{5\sqrt{4}}{\sqrt{3}}(\cdot\sqrt{3})=\frac{5\sqrt{4}\sqrt{3}}{(\sqrt{3})^2}=\frac{5\cdot2\cdot\sqrt{3}}{3}=\frac{10\sqrt{3}}{3}[/tex]10)
[tex]-\frac{5}{3\sqrt{2}}(\cdot\sqrt{2})=-\frac{5\sqrt{2}}{3(\sqrt{2})^2}=-\frac{5\sqrt{2}}{3\cdot2}=-\frac{5\sqrt{2}}{6}[/tex]11)
[tex]\frac{2\sqrt{3}}{4\sqrt{5}}(\cdot\sqrt{5})=\frac{2\sqrt{3}\sqrt{5}}{4(\sqrt{5})^2}=\frac{2\sqrt{15}}{4\cdot5}=\frac{\sqrt{15}}{2\cdot5}=\frac{\sqrt{15}}{10}[/tex]12)
[tex]\frac{\sqrt{5}}{\sqrt{2}}(\cdot\sqrt{2})=\frac{\sqrt{5}\sqrt{2}}{(\sqrt{2})^2}=\frac{\sqrt{10}}{2}[/tex]