Relax

Respuesta :

To find the volume of the given prism, first, we have to transform each mixed number into a fraction

[tex]\begin{gathered} 3\frac{3}{4}=\frac{3\cdot4+3}{4}=\frac{12+3}{4}=\frac{15}{4} \\ 3\frac{1}{3}=\frac{3\cdot3+1}{3}=\frac{9+1}{3}=\frac{10}{3} \\ 2\frac{1}{2}=\frac{2\cdot2+1}{2}=\frac{4+1}{2}=\frac{5}{2} \end{gathered}[/tex]

Then, we multiply the dimensions to find the volume

[tex]V=\frac{15}{4}\times\frac{10}{3}\times\frac{5}{2}=\frac{750}{24}=\frac{375}{12}ft^3=\frac{125}{4}ft^3=31\frac{1}{4}ft^3[/tex]

But, we know that 1 foot is equivalent to 30.48 centimeters, so let's transform it

[tex]31.25ft^3\cdot\frac{30.48\cdot30.48\cdot30.48(cm)^3}{1ft^3}\approx884,901\frac{23}{50}(cm)^3[/tex]