Given,
[tex]\begin{gathered} \text{The system of pair of linear equation is,} \\ 18x-10y=74\ldots\ldots\ldots\ldots\ldots.\ldots.(i) \\ 9x-9y=45\ldots\ldots\ldots..\ldots\ldots\ldots.(ii) \end{gathered}[/tex]Multiplying equation (ii) by 2 as it make the coefficent of x in both equation equal.
[tex]\begin{gathered} 18x-10y=74\ldots\ldots\ldots\ldots\ldots.\ldots.(i) \\ 18x-18y=90\ldots\ldots\ldots..\ldots\ldots\ldots.(iii) \\ \end{gathered}[/tex]Substracting equation (i) from equation (iii) then we get,
[tex]\begin{gathered} 18x-18y-(18x-10y)=90-74 \\ 18x-18y-18x+10y=16 \\ -8y=16 \\ y=-2 \end{gathered}[/tex]The value of y is -2.
Substituting the value of y in equation (i) then,
[tex]\begin{gathered} 18x-10y=74 \\ 18x+20=74 \\ 18x=54 \\ x=3 \end{gathered}[/tex]Hence, the solution of the linear pair (x, y) is (3, -2).