
Answer:
a) mean μ = 50 median M = 50 mode Md = 50
b) mean μ₂ = 52,5 median M = 52,5 mode Md = 52,5 all vales increased in 2,5 ( thousands of $) the same quantity of individuals incements
c) mean μ₃ = 52,50 median M = 52,5 mode Md = 52,5 The same values obtain in b)
d) mean μ₃ = 52,50 median M = 50 and Mode 50
Step-by-step explanation:
a) Mean μ is the average then:
30 30 45 50 50 50 55 55 60 75
μ = 50
The median M, is the central (fifth value) 50
And the mode
Md = 50
b) Adding 2,5 ( in thousands of $) to each one of the employees
32,5 32,5 47,5 52,5 52,5 52,5 57,5 57,5 62,5 77,5
The mean μ₂ = 52,5 $, since the average value has to be increased by the common increased number
The median M = 52,5 and also the mode Md = 52,5
c) 31,5 31,5 47,25 52,5 52,5 52,5 57,75 57,75 63 78,75
The mean μ₃ = 52,50
The median M = 52,50
The Mode Md = 52,50
d) 30 30 45 50 50 50 55 55 60 100
μ₄ = 52,5
Median M = 50
Mode Md = 50