A concentration cell based on the following half reaction at 289 K has initial concentrations of 1.39 M , 0.312 M , and a potential of 0.037206 V at these conditions. After 9.1 hours, the new potential of the cell is found to be 0.0095376 V. What is the concentration of at the cathode at this new potential

Relax

Respuesta :

Answer:

The concentration at the cathode is  [tex]A_1 = 0.8183M[/tex]

Explanation:

From the question we are told that

   The initial concentration is  [tex]1.39 M \ for \ Zn^{2+} \ at \ anode \ , 0.312 M \ for \ Zn^{2+} \ at \ cathode[/tex]

     The reaction is  

 At Cathode  [tex]Zn^{2+} + 2 e^- ------> Zn[/tex]

  At anode    [tex]Zn -----> Zn ^{2+} + 2e^{-}[/tex]

     The initial potential is  [tex]+ 0.037206V \ for \ Cathode \ and \ + 0.037206V \ for \ anode[/tex]

The complete reaction is

                      [tex]Zn^{2+} + Zn_{(s)} ----> Zn^{2+} + Zn_{(s)}[/tex]  

                       (Cathode)   -----------------  (anode)

 Looking the reaction above we can see that after the reaction  [tex]Zn^{2+}[/tex] at cathode loss some concentration and [tex]Zn^{2+}[/tex]  will gain some concentration

 Let say the amount of concentration lost/gained is = z M

The after the reaction the concentration of [tex]Zn^{2+}[/tex]  at the cathode would be

       [tex]A_1 = 1.39 -z[/tex]

While the concentration at the anode would be  

          [tex]A_2 = 0.312 +z[/tex]

At initial the condition the net potential of the cell is

        [tex]E^i_{net} = 0V[/tex]

    After time [tex]t = 9.1 hrs = 9.1 *3600 = 32760s[/tex]

     The potential  of the cell is  

                  [tex]E_{net} = 0.0095376V[/tex]

Generally this potential is defined by Nernst equation as

               [tex]E_{cell} = E^i_{cell}- \frac{RT}{nF} ln[\frac{[A_2]}{[A_2]} ][/tex]

Where R is the gas constant with a value of  [tex]R = 8.314 J/mol \cdot K[/tex]

           T is the temperature given as  [tex]T = 289K[/tex]

          n is the number of mole of electron which [tex]= 2 mol \ e^-[/tex]

           F is the farad constant with a value of  [tex]= 96500 C /mol\ e^-[/tex]

Substituting values

             [tex]0.0095376 =0.0 -\frac{[8.314][288]}{[2] [9600]} ln [\frac{(0.312 +z)}{(1.39 -z)} ][/tex]

             [tex]0.0095376 = 0.12406383 \ ln [\frac{( 0.312 + z)}{[1.39 -z]} ][/tex]

              [tex]\frac{0.0095376 }{ 0.12406383} = \ ln [\frac{( 0.312 + z)}{[1.39 -z]} ][/tex]

              [tex]0.0768766 = \ ln [\frac{( 0.312 + z)}{[1.39 -z]} ][/tex]

      Taking exponent of both sides

               [tex]e^{0.0768766 }= [\frac{( 0.312 + z)}{[1.39 -z]} ][/tex]

                [tex]1.0799 = [\frac{( 0.312 + z)}{[1.39 -z]} ][/tex]  

                [tex][1.39 -z ]1.0799 = 0.312 + z \\\\1.501 - 1.0799z = 0.312 +z\\\\1.501-0.312 = 1.0799z + z\\\\1.1891 =2.0799z\\\\ z =\frac{1.1891}{2.0799}\\\\ z =0.5717[/tex]  

The concentration at the cathode is  [tex]A_1 = 1.39 -0.5717[/tex]

                                                               [tex]A_1 = 0.8183M[/tex]