Comic-strip Superhero meets an asteroid in outer space and hurls it at 800 m/s, as fast as a speeding bullet. The asteroid is a thousand times more massive than Superhero. In the strip, Superhero is seen at rest after the throw. Taking physics into account, what would be the speed of his recoil?

Relax

Respuesta :

The recoiling speed of the Superhero is - 0.8 m/s when the superhero hurls the asteroid at the speed of a bullet.

From the law of conservation of linear momentum, the momentum of the superhero and the asteroid will be equal.

Thus, From the law of conservation  

[tex]m_1v_1 = -m_2v_2[/tex]

Where,

[tex]m_1[/tex] = mass of superhero

[tex]v_1[/tex] - speed of superhero = 800 m/s

[tex]m_2[/tex] - mass of asteroid = 1000m

[tex]v_2[/tex] =  velocity of the asteroid

Put the values in the formula  

[tex]m_1 \times 800 = -1000m \times v_2[/tex]

Mass [tex]m[/tex] will cancel each other,  

[tex]v _2= \dfrac {800}{ -1000}\\\\v_2 = -0.8 \rm\; m/s[/tex]

Therefore, the recoiling speed of the Superhero is - 0.8 m/s.

To know more about the recoiling speed,

https://brainly.com/question/20715670