Four point charges of magnitude 2.7 mu or micro CC are at the corners of a square of side 5 m.

(a) Find the electrostatic potential energy if all of the charges are negative.
(b) Find the electrostatic potential energy if three of the charges are positive and one is negative.

Relax

Respuesta :

Answer:

71.06 × 10⁻³ N.m

0

Explanation:

Given that:

four point charges of magnitude = 2.7 mu

at the corners of a square of side 5m

a) Find the electrostatic potential energy if all of the charges are negative.

Electrostatic potential energy can be calculated using the formula:

P.E =  [tex]E(\frac{kq_1q_2}{r})[/tex]

If all the charges are negative; then, we have:

P.E  = [tex][\frac{q_1q_2}{5m}]+[\frac{kq_1q_2}{5m}]+[\frac{kq_1q_3}{5\sqrt{2m} }]+[\frac{kq_2q_4}{5\sqrt{2m} } ]+{\frac{kq_2q_3}{5m}+[\frac{kq_3q_4}{5m}][/tex]

P.E = [tex][\frac{k(-q)(-q)}{5m}] +[\frac{k(-q)(-q)}{5m}] +[\frac{k(-q)(-q)}{5m\sqrt{2}}] +[\frac{k(-q)(-q)}{5m\sqrt{2}}] +[\frac{k(-q)(-q)}{5m}] +[\frac{k(-q)(-q)}{5m}][/tex]

P.E  = [tex]kq^2[\frac{1}{5}+ \frac{1}{5}+\frac{1}{5\sqrt{2} }+\frac{1}{5\sqrt{2} }+\frac{1}{5}+\frac{1}{5}][/tex]

P.E  = [tex]kq^2[\frac{4}{5}+\frac{2}{5\sqrt{2} } ]m^{-1[/tex]

P.E  = kq² (1.083)m⁻¹

P.E  = (9 × 10⁹ Nm²/C²)(2.7 × 10⁻⁶ C)²(1.083 m⁻¹)

P.E = 0.07106 N.m

P.E = 71.06 × 10⁻³ N.m

b) Find the electrostatic potential energy if three of the charges are positive and one is negative.

P.E =  [tex]E(\frac{kq_1q_2}{r})[/tex]

If three of the charges are positive and one is negative; we have

P.E = [tex][\frac{q_1q_2}{5m}]+[\frac{kq_1q_2}{5m}]+[\frac{kq_1q_3}{5\sqrt{2m} }]+[\frac{kq_2q_4}{5\sqrt{2m} } ]+{\frac{kq_2q_3}{5m}+[\frac{kq_3q_4}{5m}][/tex]

P.E = [tex][\frac{k(q)(q)}{5m}] +[\frac{k(q_1)(-q)}{5m}]+[\frac{k(q)(q)}{5m\sqrt{2} }]+[\frac{k(q_2)(-q)}{5m\sqrt{2} }]+[\frac{k(q)(q)}{5m}]+[\frac{k(q)(-q)}{5m}][/tex]

P.E = [tex]kq^2[\frac{1}{5}+ \frac{1}{5}+\frac{1}{5\sqrt{2} }-\frac{1}{5\sqrt{2} }+\frac{1}{5}+\frac{1}{5}]m^{-1[/tex]

P.E = [tex]kq^2[0][/tex]

P.E = 0