Relax

Respuesta :

Finti

Answer:

sin[tex]\pi[/tex]/4 * sin[tex]\pi[/tex]/6 = 1/2 *(cos [tex]\pi[/tex]/12 - cos 5[tex]\pi[/tex]/12)

Step-by-step explanation:

Formula:- sinX sinY = (1/2) [ cos (X - Y) - cos (X + Y) ]

sin(π/4)sin(π/6)

= (1/2)[cos(π/4 - π/6) - cos(π/4 + π/6)]

= (1/2)[cos(3π/12 - 2π/12) - cos(3π/12 + 2π/12)]

= (1/2)[cos(π/12) - cos(5π/12)]