
Answer:
Mean salary=$17818.68
Step-by-step explanation:
Salary($) Â Â Â Â Â Employees(f)
5001-10,000 Â Â 22
10,001-15,000 Â Â 20
15,001-20,000 Â 21
20,001-25,000 Â 23
25,001-30,000 Â 24
We know that company had 110 employees so ∑f should be equal to 110.
∑f=22+20+21+23+24=110
The mean salary can be computed as
[tex]xbar=\frac{sum(fx)}{sum(f)}[/tex]
The x be the midpoint can be calculated by taking the average of upper and lower class limit.
Class Interval Frequency(f)    x         fx
5001-10,000 Â Â Â Â Â Â 22 Â Â Â Â Â Â Â 7500.5 Â Â 165011
10,001-15,000 Â Â Â Â Â 20 Â Â Â Â Â Â Â 12500.5 Â Â 250010
15,001-20,000 Â 21 Â Â Â Â Â Â Â Â 17500.5 Â Â 367510.5
20,001-25000 Â 23 Â Â Â Â Â Â Â 22500.5 Â Â 517511.5
25,001-30,000 24 Â Â Â 27500.5 660012
fx can be computed by multiplying each x value with frequency in the respective class.
∑fx=165011+250010+367510.5+517511.5+660012=1960055
[tex]xbar=\frac{1960055}{110}=17818.68[/tex]
Thus, the mean salary is $17818.68.